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Abstract: We determine the abundance of the lightest (dark matter) sterile neutrinos

created in the Early Universe due to active-sterile neutrino transitions from the thermal

plasma. Our starting point is the field-theoretic formula for the sterile neutrino produc-

tion rate, derived in our previous work [JHEP 06(2006)053], which allows to systemati-

cally incorporate all relevant effects, and also to analyse various hadronic uncertainties.

Our numerical results differ moderately from previous computations in the literature, and

lead to an absolute upper bound on the mixing angles of the dark matter sterile neu-

trino. Comparing this bound with existing astrophysical X-ray constraints, we find that

the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile

neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino

masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction

and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound

may conflict with a lower bound from structure formation, but a definitive conclusion ne-

cessitates numerical simulations with the non-equilibrium momentum distribution function

that we derive. If other production mechanisms are also operative, no upper bound on the

sterile neutrino mass can be established.
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1. Introduction

In recent works [1, 2] it has been demonstrated that an extension of the Minimal Standard

Model (MSM) by three right-handed gauge-singlet fermions — sterile neutrinos — with

masses smaller than the electroweak scale, allows to address a number of phenomena which

cannot be explained in the framework of the MSM. Indeed there exists a parameter choice

within this model, called the νMSM in refs. [1, 2], which is consistent with experimentally

observed neutrino masses and mixings, provides a candidate for dark matter particles, and

can explain the baryon asymmetry of the Universe [2], through a CP-violating redistribu-

tion of the lepton number among active and sterile flavours [3], followed by an anomalous

conversion of the lepton number in active flavours into a baryon number [4]. Adding to
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this model one neutral scalar field allows to accommodate inflation [5]. Moreover various

astrophysical problems may find their explanations [6].

In the νMSM, the role of dark matter is played by the lightest sterile neutrino, with a

mass in the keV range. This dark matter candidate was proposed a while ago in ref. [7] from

different considerations, and studied later on in a number of works [8]–[15]. It was pointed

out in ref. [7] that the couplings of the dark matter sterile neutrino to charged leptons and

active neutrinos can be so weak that it never equilibrates in the Early Universe. As has been

stressed recently [16]–[21], this means that even if the exact values of the mixing angles

between sterile and active neutrinos were known, the primordial abundance of the dark

matter sterile neutrinos cannot be predicted. The reason is trivial: the kinetic equation

describing sterile neutrino production is a first order differential equation in time, and

in order to solve it one must specify the initial condition, on which the solution depends

significantly, because inverse processes are much slower than the rate of Universe expansion.

In more physical terms, one has to know the physics beyond the νMSM to set the initial

conditions; an example of a complete framework, involving the inflaton, can be found in

ref. [5].

Though a prediction of the primordial abundance of the dark matter sterile neutrinos

requires physics beyond the νMSM, an upper limit on the mixing angle θ between sterile

and active neutrinos as a function of the sterile neutrino mass Ms,

sin2(2θ) <∼ f(Ms) , (1.1)

can be established. Indeed, some number of sterile neutrinos are certainly produced in the

Early Universe through the mixing with active neutrinos, and this amount must be smaller

than the abundance of dark matter, known from observations. This upper bound can be

derived with a small number of extra assumptions, which we formulate as follows:

(i) The νMSM is a good effective theory below energies of a few GeV, so that there are

no interactions beyond those included in the νMSM Lagrangian.

(ii) The standard Big Bang scenario is valid starting from temperatures above a few GeV.

(iii) The charge asymmetries of the plasma (particularly the asymmetries in the total

lepton number, and in the various lepton flavours) are small, i.e. at most within a

few orders of magnitude of the observed baryon asymmetry, at temperatures below

a few GeV.

(iv) The masses of the two heavier sterile neutrinos are large enough so that they decay

above temperatures of a few GeV.

The assumptions (i-iii) are crucial. For example, if the inflaton is light, its interactions

may result in sterile neutrino production at a low scale [5], making (i) invalid. For very

low reheating temperatures after inflation, the assumption (ii) is not satisfied and the

production of sterile neutrinos may be suppressed [22]. As for point (iii), it is known from

ref. [8] that the rate of sterile neutrino production is in fact greatly boosted if relatively

large lepton asymmetries (corresponding to chemical potentials µ/T >∼ 10−5) are present.
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On the other hand, if the crucial assumptions (i–iii) are valid, the assumption (iv) can be

relaxed: once the result is known, the decays of heavier sterile neutrinos can be taken into

account a posteriori [19]. We will return to the last point below.

There are quite a number of computations of the function f(Ms) already existing in

the literature, starting from similar assumptions [7, 9, 10, 12, 13]. They are based, however,

on kinetic equations which were not derived rigorously and which in fact differ from the

expressions obtained from the first principles of statistical mechanics and quantum field

theory [21]. Moreover, as discussed in ref. [21], neither the hadronic scattering contributions

to the rate of sterile neutrino production, nor the uncertainties in the hadronic equation-

of-state, have been exhaustively analyzed in refs. [7, 9, 10, 12, 13].

The aim of the present paper is therefore to apply the general formalism of ref. [21] to

find the amount and spectrum of the sterile neutrinos created in active-sterile transitions.

Our results differ from those that have previously appeared in the literature, even though

it turns out that the order of magnitude remains the same.

Given the results of the theoretical computation, avoiding the overclosure of the Uni-

verse allows us to establish the constraint in eq. (1.1). We can, however, also carry out

a comparison with other astrophysical and cosmological limits on the properties of sterile

neutrinos. Indeed, the sterile neutrino radiative decays N → νγ produce a feature in the

diffuse X-ray background [9, 16] or a line in the X-ray spectrum in the direction where

dark matter is accumulated (such as clusters of galaxies [11, 18], dwarf galaxies [20], or

galaxies [11, 20, 23, 24]). The position of this line, if found, determines the mass Ms of

the sterile neutrino, while the line intensity would fix the mixing angle θ. No feature or

line has been observed so far, which places a constraint on the mixing angle of the form

sin2(2θ) <∼ fX(Ms) [16, 18, 20, 23 – 29]. An exclusion plot from refs. [20, 26] is reproduced

in figure 9 below, and can be compared with eq. (1.1).

Another, completely independent constraint comes from cosmological structure forma-

tion, particularly in the form of Lyman-α forest observations [30]–[33]. Being relatively

light, dark matter sterile neutrinos would play the role of warm dark matter, with a free-

streaming length exceeding greatly that of cold dark matter. This erases inhomogeneities

on the smallest scales. An observation of the small scale structures puts, therefore, an

upper bound on the free-streaming length and, consequently, on the average velocity of the

dark matter particles. This converts to a lower bound on the inverse velocity, which can

be expressed roughly as Ms〈|qa|〉/〈|qs|〉 >∼ M0, where 〈|qa|〉 and 〈|qs|〉 are the average mo-

menta of active and sterile neutrinos, respectively, at the moment of structure formation,

and the value of M0 is as large as M0 ' 14.4 keV according to ref. [32]. The computations

of refs. [7, 10, 13] lead to a nearly-thermal spectrum of sterile neutrinos which is some-

what shifted in the infrared in comparison with the Fermi-Dirac distribution. According

to ref. [13], 〈|qs|〉/〈|qa|〉 ' 0.9 (uncertainties in this number and its dependence on the

sterile neutrino mass will be discussed below). This leads to Ms > 13 keV [32], to again

be compared with eq. (1.1). Note that ref. [33] gives a somewhat weaker bound Ms >∼ 10

keV. We stress that these mass bounds do depend on the mechanism of sterile neutrino

production through the momentum distribution function of sterile neutrinos [19]. A model-

independent constraint (the Tremaine-Gunn bound) on the mass coming from the analysis
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of the rotational curves of dwarf satellite galaxies [34, 35] is in fact much weaker and reads

Ms >∼ 0.3 keV [36].

These three different types of constraints, eq. (1.1), X-ray, and Lyman-α or the

Tremaine-Gunn bound, determine the allowed values for the mass and mixing angles of the

dark matter sterile neutrino, necessary for planning for their search in space missions [29]

and in laboratory experiments [37]. In addition, the validity of the Dodelson-Widrow sce-

nario, where only thermal production is taken into account (so that eq. (1.1) becomes an

equality), can be tested.

The plan of the paper is the following. We start by reviewing the formalism of ref. [21]

in section 2. In section 3 we apply it to the leptonic contribution to the sterile neutrino

production rate, while in section 4 the kinetic equation for the sterile neutrino abundance

and its solution in the cosmological context are discussed. In section 5 we analyse the

hadronic contributions that play a role in the solution of the kinetic equation, and their

uncertainties. In section 6 we combine all these results together and present numerical

estimates for the relic sterile neutrino abundance as a function of Ms and θ. In section 7

we compare our results with the observational constraints mentioned above, and discuss

the viability of the Dodelson-Widrow scenario for sterile neutrino production. We conclude

in section 8. In this paper the notations of ref. [21] will be used unless stated otherwise.

2. Review of the general formalism

As has been discussed in ref. [21], the assumptions (i–iv) allow to derive, from first prin-

ciples, a general formula for the sterile neutrino production rate, provided that we choose

parameter values consistent with the observational constraints mentioned above. The re-

striction to temperatures below a few GeV in these assumptions means that the electroweak

symmetry is broken, whereby it is an excellent approximation to replace the Higgs field

by its vacuum expectation value v ' 246 GeV. Moreover combining the two sets of ob-

servational constraints restricts the mixing parameter(s) θ to be small. To be precise,

there are several mixing parameters, θαI , where I is the sterile neutrino flavour and α is

the active neutrino flavour. We define θ2
αI ≡ |MD|2αI/M

2
I , where |MD|αI ≡ |vFαI |/

√
2;

FαI are the neutrino Yukawa couplings; and MI are the sterile neutrino Majorana masses.

In the following we choose the lightest sterile neutrino to correspond to I ≡ 1. Because

of the smallness of θαI , θαI <∼ 10−3 (or, in terms of Yukawa couplings, |hα1| <∼ 10−11,

|hα2|, |hα3| <∼ 10−7), it is perfectly sufficient to restrict to leading order in a Taylor series

in θ2
αI , which simplification plays an essential role in the first-principles derivation pre-

sented in ref. [21]. (For I = 2, 3 these constraints derive from the baryon asymmetry of the

Universe [2].) For future reference, let us also define

θ2 ≡
∑

α=e,µ,τ

θ2
α1 ; (2.1)

this angle corresponds to that in eq. (1.1).
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With these premises, the phase space density nI(t,q) of sterile neutrinos in either spin

state,

nI(t,q) =
∑

s=1,2

dN
(s)
I (t,x,q)

d3xd3q
, (2.2)

obeys the equation
(

∂

∂t
− Hqi

∂

∂qi

)

nI(t,q) = R(T,q) , (2.3)

where H is the Hubble parameter, H = d lna(t)/dt, and qi are the spatial components

of q. Note that in thermal equilibrium, nI(t, q) = 2nF(q0)/(2π)3, where nF is the Fermi

distribution function. The source term reads [21]

R(T,q) =
4nF(q0)

(2π)32q0

3
∑

α=1

|MD|2αI

{[Q + ReΣ]2 − [Im Σ]2}2 + 4{[Q + Re Σ] · Im Σ}2
× (2.4)

×Tr
{

/QaL

(

2[Q + Re Σ] · Im Σ [ /Q +Re /Σ ]−{[Q+Re Σ]2−[Im Σ]2} Im /Σ
)

aR

}

,

where Q is the on-shell four-momentum of the sterile neutrino (i.e. Q2 = M2
I ); Σ ≡ Σαα(Q)

is the self-energy of the active neutrino of flavour α; and aL, aR are the chiral projectors.

It is obvious that nI(t,q) and R(T,q) are functions of q ≡ |q| only, and we will use the

corresponding simplified notation in the following.

Now, the real part Re Σ of the active neutrino self-energy is generated at 1-loop level

through W and Z-boson exchange. At low energies, the result can be expanded in 1/m2
W ,

1/m2
Z . In the absence of leptonic chemical potentials, the first term in the expansion

vanishes, and the leading contribution comes from the second term. Writing the result as

Re /Σ αα(Q) = /Qaαα(Q) + /u bαα(Q) , (2.5)

where u = (1,0), we note that the function aαα(Q) can be ignored, since it is small

compared with the tree-level term /Q . On the other hand the latter structure in eq. (2.5)

does not appear at tree-level, and needs to be kept. For q ¿ mW it reads [38, 39]

bαα(Q) =
16G2

F

παw
q0

[

2φ(mlα) + cos2θW φ(mνα)
]

, (2.6)

where GF = g2
w/4

√
2m2

W is the Fermi constant, mlα is the mass of the charged lepton of

generation α (l1 ≡ e, l2 ≡ µ, l3 ≡ τ), and mνα = 0 is the mass of the MSM active neutrino.

The function φ is finite and easily evaluated numerically:

φ(m) =

∫

d3p

(2π)3
nF(E)

2E

[

4

3
|p|2 + m2

]

E=
√

|p|2+m2

. (2.7)

Note, in particular, that φ(0) = 7π2T 4/360. The functions bαα are plotted in figure 1.

As concerns the imaginary part Im Σ, there is a 1-loop contribution from the same

graphs as for ReΣ, but it is exponentially suppressed, ∼ exp(−mW /T ) (cf. section 3.1).

Therefore, at low temperatures, the dominant contribution is generated by those 2-loop
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Figure 1: The function bαα(Q) that determines the real part Re Σαα(Q) (cf. eq. (2.5)), in units

of G2

F T 4q0, as a function of the temperature T and the active neutrino flavour α, with α = e, µ, τ .

We have assumed here that |q0| ¿ mW .

graphs which are not exponentially suppressed. The dependence on Q is more complicated

than in eq. (2.6): in general Im Σ(Q) = G2
F T 5f(Q,T ), where f is a non-trivial dimensionless

function, which is numerically of order unity.

Given that Im Σ ¿ ReΣ because of the αw-suppression, and that ReΣ ≈ u bαα(Q)

because of the reasons mentioned above, the expression in eq. (2.4) can be simplified.

Carrying out the Dirac traces; combining equivalent terms; and re-introducing Dirac traces

and chiral projectors aL, aR around Im /Σ at the end, as a reminder of our convention of

showing them explicitly [21], we arrive at

R(T,q) ≈ 4nF(q0)

(2π)32q0

3
∑

α=1

|MD|2αI ×

×
(M2

I − b2)Tr
{

/QaL Im /Σ aR

}

+ 2(M2
I + q0b) bTr

{

/u aL Im /Σ aR

}

{

M2
I + 2q0b + b2

}2 , (2.8)

where b ≡ bαα(Q), and we made use of Q2 = M2
I .

Now, let us estimate the orders of magnitude that are relevant for eq. (2.8) (for analo-

gous earlier discussions see, e.g., refs. [7, 9]). We consider momenta of order |q| ∼ T , where

the rate turns out to peak; temperatures in the range 1MeV <∼ T <∼ 10 GeV; and sterile

neutrino masses in the range 10−1 keV <∼ M1 <∼ 103 keV. Thereby q0 ∼ T À M1, and

b ∼ 50G2
F T 5 (cf. figure 1). We now identify two different temperature scales:
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• We define T1 such that M2
1 ∼ 2q0b for T ∼ T1, i.e.

T1 ∼
(

M1

10GF

)
1

3

∼ 200MeV

(

M1

keV

)
1

3

. (2.9)

Note that for T ∼ T1, b2 ¿ M2
I , and obviously also b ¿ q0.

• We define T2 such that M2
1 ∼ b2 for T ∼ T2, i.e.

T2 ∼
(

M1

50G2
F

)
1

5

∼ 2.7GeV

(

M1

keV

)
1

5

. (2.10)

Note that for T ∼ T2, q0b À M2
1 , while it is still true that b ¿ q0.

Let us then estimate the magnitude of the second row in eq. (2.8) for various temperatures.

For simplicity we set ImΣ ∼ G2
F T 5, since the precise magnitude plays no role, given that

Im Σ appears linearly in all terms in the numerator. We observe that:

• For T ¿ T1, M2
1 dominates in magnitude over all thermally generated terms. The

second row of eq. (2.8) then evaluates to ∼ G2
F T 6/M2

1 , i.e. decreases fast at low T .

• For T ∼ T1, the second row evaluates to ∼ 1/102. This is the peak value.

• For T À T1, the denominator is dominated by (2q0b)2 and thus starts to increase.

The second row of eq. (2.8) then evaluates to ∼ M2
1 /104G2

F T 6, i.e. decreases again

fast.

• Once T ∼ T2, the two terms in the numerator of eq. (2.8) are of the same order of

magnitude. In fact, the first term becomes negative, but this effect is compensated

for by the second term, so that the expression as a whole remains positive. The

overall magnitude is now ∼ G2
F T 4

2 , i.e. about 1/106 of that at T ∼ T1.

• For T À T2, the second row increases as ∼ G2
F T 4. Given that GF ≈ 1/(290GeV)2,

however, these contributions remain very small in the region T <∼ 10 GeV. Moreover

in practice our rough approximation turns out to be an overestimate, when compared

with the exact numerical evaluation.

To confirm this qualitative picture, we have verified numerically that if one starts the

integration (to be specified in section 4) from a high temperature T ∼ 10GeV À T2, then

both terms in the numerator of eq. (2.8) need to be taken into account, in order to obtain

a positive production rate (in the range T >∼ (5 . . . 10) GeV the exponentially suppressed

1-loop contribution to Im Σ needs to be taken account as well, but this does not change the

conclusions). Their combined contribution from the high-temperature region is, however,

completely negligible. For the dark matter sterile neutrino it is therefore in practice enough

to start the integration from T ∼ T2 ∼ a few GeV, and keep only the first term in the

numerator, which is what we will do in the following.
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3. Leptonic contribution to the production rate

3.1 1-loop effects

We now proceed to determine Im Σ. We assume that the temperature is well below the

temperature Tew where the electroweak crossover takes place, Tew ∼ 100 − 200 GeV. In

this situation the Higgs phenomenon provides for a good tool for carrying out perturbative

computations. The simplest contributions to Im Σαα come from the same 1-loop graphs as

were considered for Re Σαα, involving a single W± or Z0-propagator; however we do not

carry out any expansion in the inverse W± or Z0 masses like for ReΣαα. A straightforward

computation in Feynman gauge yields

Im /Σ 1-loop
lep (Q) = παwn−1

F (q0)
∑

C=W,Z

pC

∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2
/P 1 ×

×
{

(2π)4δ(4)(P1 + P2 − Q)nF1nB2 +
1

2 Q

+ (2π)4δ(4)(P2 − P1 − Q)nB2(1 − nF1) + 2

1

Q

+ (2π)4δ(4)(P1 − P2 − Q)nF1(1 + nB2) + 1

2

Q

+ (2π)4δ(4)(P1 + P2 + Q) (1 − nF1)(1 + nB2)

}

,
1

Q

2

(3.1)

where nFi ≡ nF(Ei), nBi ≡ nB(Ei); and pW ≡ 2, pZ ≡ cos−2 θW are the “weights” of

the charged and neutral current channels. Furthermore, Pi ≡ (Ei,pi) are on-shell four-

momenta,

E1 ≡
√

p2
1 + m2

lC
, E2 ≡

√

p2
2 + m2

C , (3.2)

where mlW ≡ mlα and mlZ ≡ mνα = 0. The graphs in eq. (3.3) illustrate the various

processes, with the wavy line indicating the weak gauge boson. The phase space integrals

remaining can be evaluated numerically as explained in appendix A.

For the masses that we are interested in, mlα ,MI ¿ mW , only one of the channels in

eq. (3.1) gives a non-zero contribution, namely the second one.

Now, as discussed in the previous section, the dominant production of NI takes place

at temperatures much below mW , say, T <∼ mW /10. In this case the phase space factor

nB2 guarantees that the 1-loop contribution is suppressed by at least ∼ exp(−mW /T ), and

thus vanishingly small. One might worry that thermal effects on the W± boson mass make

mW (T ) smaller than naively expected; at the very small temperatures we are intested in,

however, this effect is negligible. Therefore, the 1-loop contribution is indeed inessential

for our purposes, and does not play a role in the following.

3.2 2-loop effects

We now move to specifying the 2-loop contribution to Im Σ in eq. (2.8), originating from

intermediate states containing leptons only. These effects can be reliably treated within
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perturbation theory, and are not exponentially suppressed at low temperatures. At the

same time, previous evaluations in the literature have made used of phenomenological

approximations which are not part of the strict perturbative computation, particularly in

order to simplify the Dirac structures that enter the sterile neutrino production rate. In

the following we evaluate the leptonic contributions without any such approximations.

In order to proceed, it is actually helpful to start by recalling the contribution that

emerges from a pair of free quarks, with masses m2,m3; the derivation of this result has

been discussed in explicit detail in ref. [21]. The final result, given by eq. (3.41) of ref. [21],

reads:

Im /Σ 2-loop
had (Q) = 2NcG

2
F n−1

F (q0)
∑

C=W,Z

pC

∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2

∫

d3p3

(2π)32E3
×

×
{

(2π)4δ(4)(P1 + P2 + P3 − Q)nF1nF2nF3 A(−mlC ,m2,−m3) +
1

2

3

Q

+ (2π)4δ(4)(P2 + P3 − P1 − Q)nF2nF3(1 − nF1)A(mlC ,m2,−m3) +
2 1

3 Q

+ (2π)4δ(4)(P1 + P3 − P2 − Q)nF1nF3(1 − nF2)A(−mlC ,−m2,−m3) +
1 2

3 Q

+ (2π)4δ(4)(P1 + P2 − P3 − Q)nF1nF2(1 − nF3)A(−mlC ,m2,m3) +
1 3

2 Q

+ (2π)4δ(4)(P1 − P2 − P3 − Q)nF1(1 − nF2)(1 − nF3)A(−mlC ,−m2,m3) + 1

2

Q

3

+ (2π)4δ(4)(P2 − P1 − P3 − Q)nF2(1 − nF1)(1 − nF3)A(mlC ,m2,m3) + 2

1

Q

3

+ (2π)4δ(4)(P3 − P1 − P2 − Q)nF3(1 − nF1)(1 − nF2)A(mlC ,−m2,−m3) + 3

1

Q

2

+ (2π)4δ(4)(−P1 − P2 − P3 − Q) (1 − nF1)(1 − nF2)(1 − nF3)A(mlC ,−m2,m3)

}

,
1

2

Q

3

(3.3)

where nFi ≡ nF(Ei);

A(mlC ,m2,m3) ≡ γµ( /P 1 + mlC )γν Tr
[

( /P 2 + m2)γµΓ( /P 3 + m3)γνΓ
]

; (3.4)

pW ≡ 2, pZ ≡ 1/2 are the “weights” of the charged and neutral current channels; and

mlC has the same meaning as in eq. (3.2). Furthermore, Pi ≡ (Ei,pi) are again on-shell

four-momenta, now with the mass assignments

E1 ≡
√

p2
1 + m2

lC
, E2 ≡

√

p2
2 + m2

2 , E3 ≡
√

p2
3 + m2

3 . (3.5)

The graphs in eq. (3.3) illustrate the various processes. Further details (in particular the

values of the masses m2,m3 and of the Dirac matrix Γ) will be explained presently.

Considering then the leptonic contributions, it is obvious that the same eight kinematic

possibilities will appear as in eq. (3.3), just with different masses and coefficients. On the

other hand additional terms appear as well, since Z-exchange can proceed through more

channels than in the hadronic case.
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Given that the kinematic possibilities are identical, however, it is possible to “factorise”

the result into a “Dirac part” and a “kinematic part”. It is therefore enough to show the

result for the Dirac part by considering one of the kinematic channels only; for simplicity

we choose the alternative in eq. (3.3) where all masses are positive inside the A-function.

A straightforward computation parallelling the one in ref. [21] then produces the result

Im /Σ 2-loop
lep (Q) = 2G2

F n−1
F (q0)

∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2

∫

d3p3

(2π)32E3
×

×
{

2γµ( /P 1 + mlα)γν
∑

β=e,µ,τ

Tr
[

( /P 2 + mlβ )γµaL( /P 3 + mνβ
)γνaL

]

+

+
1

2
γµ( /P 1 + mνα)γν

∑

β=e,µ,τ

Tr
[

( /P 2 + mlβ)γµΓ( /P 3 + mlβ)γνΓ
]

+

+
3

4
γµ( /P 1 + mνα)γν

∑

β=e,µ,τ

Tr
[

( /P 2 + mνβ
)γµaL( /P 3 + mνβ

)γνaL

]

−

−3

4
γµ( /P 1 + mνα)γνaL( /P 2 + mνα)γµaL( /P 3 + mνα)γν −

−γµ( /P 1 + mlα)γν Γ ( /P 2 + mlα)γµaL( /P 3 + mνα)γν −

−γµ( /P 1 + mνα)γνaL( /P 2 + mlα)γµ Γ ( /P 3 + mlα)γν

}

× (3.6)

×(2π)4δ(4)(P2 − P1 − P3 − Q)nF2(1 − nF1)(1 − nF3) + . . . , 2

1

Q

3

where now Γ ≡ −1/2 + 2xW + γ5/2, with xW ≡ sin2 θW, and the energies Ei are on-shell

with the obvious mass assignments.

Inspecting eqs. (2.8) and (3.6), we observe that two kinds of Dirac traces appear in the

final result: either a product of two traces, or a single trace. Both cases are elementary,

and result in

T1≡Tr
[

/E aLγµ( /P 1 + m1)γ
νaR

]

Tr
[

( /P 2 + m2)γµ(a + bγ5)( /P 3 + m3)γν(a + bγ5)
]

=16
[

(a − b)2 P1 · P2 P3 · E + (a + b)2 P1 · P3 P2 · E + (b2 − a2) m2m3 P1 · E
]

, (3.7)

T2≡Tr
[

/E aLγµ( /P 1 + m1)γ
ν(a + bγ5)( /P 2 + m2)γµ(c + dγ5)( /P 3 + m3)γνaR

]

=8
[

−2(a + b)(c + d) P1 · P3 P2 · E + (a + b)(c − d) m2m3 P1 · E +

+(a − b)(c − d) m1m3 P2 · E + (a − b)(c + d) m1m2 P3 · E
]

, (3.8)

where the “external” four-vector E is either Q or u (cf. eq. (2.8)).

Given these ingredients — the kinematic channels in eq. (3.3), the Dirac structures

in eq. (3.6), and the traces in eqs. (3.7), (3.8) — we can finally collect together the full
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expression needed in eq. (2.8). We obtain

Tr
[

/E aL Im /Σ (Q)aR

]

= 2G2
F n−1

F (q0)
∑

i

Ci

∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2

∫

d3p3

(2π)32E3
×

×
{

(2π)4δ(4)(P1 + P2 + P3 − Q)nF1nF2nF3 Ti(−m1,m2,−m3) +
1

2

3

Q

+ (2π)4δ(4)(P2 + P3 − P1 − Q)nF2nF3(1 − nF1)Ti(m1,m2,−m3) +
2 1

3 Q

+ (2π)4δ(4)(P1 + P3 − P2 − Q)nF1nF3(1 − nF2)Ti(−m1,−m2,−m3) +
1 2

3 Q

+ (2π)4δ(4)(P1 + P2 − P3 − Q)nF1nF2(1 − nF3)Ti(−m1,m2,m3) +
1 3

2 Q

+ (2π)4δ(4)(P1 − P2 − P3 − Q)nF1(1 − nF2)(1 − nF3)Ti(−m1,−m2,m3) + 1

2

Q

3

+ (2π)4δ(4)(P2 − P1 − P3 − Q)nF2(1 − nF1)(1 − nF3)Ti(m1,m2,m3) + 2

1

Q

3

+ (2π)4δ(4)(P3 − P1 − P2 − Q)nF3(1 − nF1)(1 − nF2)Ti(m1,−m2,−m3) + 3

1

Q

2

+ (2π)4δ(4)(−P1 − P2 − P3 − Q) (1 − nF1)(1 − nF2)(1 − nF3)Ti(m1,−m2,m3)

}

,
1

2

Q

3

(3.9)

where Ti equals T1 or T2, as specified in table 1. The prefactors Ci and the masses m1,

m2, m3 relevant for each channel are also listed in table 1. For completeness and future

reference, we have included in this table the perturbative hadronic contributions as well.

4. Solution of the kinetic equation

Now that the ingredients entering eq. (2.3) are in place, we need to discuss the solution

of this equation, and identify the precise information about the equation-of-state which

is needed for the solution. The considerations that follow are rather standard (see, e.g.,

refs. [7, 9]), but we present them here for completeness and in order to fix the notation.

It is convenient to represent the rate R(T, q) as a function F of dimensionless variables,

R(T, q) = G2
F T 5F

(mi

T
,

q

T

)

, (4.1)

where mi are the masses of the particles of the MSM and of the sterile neutrinos. We also

introduce the effective numbers of massless bosonic degrees of freedom geff(T ) and heff(T )

via the relations

e(T ) ≡ π2T 4

30
geff(T ) , s(T ) ≡ 2π2T 3

45
heff(T ) , (4.2)

where e(T ) and s(T ) are the energy and entropy densities, respectively. Given the equation-

of-state of the plasma [i.e. the relation between the pressure and the temperature, p = p(T )],

geff(T ) and heff(T ) can be found from the standard thermodynamical relations

geff(T ) =
30

π2T 2

d

dT

( p

T

)

, heff(T ) =
45

2π2T 3

dp

dT
. (4.3)
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channel Ci Ti m1 m2 m3 a b c d

WW + hadrons 2Nc|Vud|2 T1 mlα md mu +1
2 −1

2

2Nc|Vus|2 T1 mlα ms mu +1
2 −1

2

2Nc|Vcd|2 T1 mlα md mc +1
2 −1

2

2Nc|Vcs|2 T1 mlα ms mc +1
2 −1

2

ZZ + hadrons Nc/2 T1 0 mu mu +1
2 − 4

3 xW −1
2

Nc/2 T1 0 mc mc +1
2 − 4

3 xW −1
2

Nc/2 T1 0 md md −1
2 + 2

3 xW +1
2

Nc/2 T1 0 ms ms −1
2 + 2

3 xW +1
2

WW + leptons 2 T1 mlα me 0 +1
2 −1

2

2 T1 mlα mµ 0 +1
2 −1

2

2 T1 mlα mτ 0 +1
2 −1

2

ZZ + leptons 1/2 T1 0 me me −1
2 + 2xW +1

2

1/2 T1 0 mµ mµ −1
2 + 2xW +1

2

1/2 T1 0 mτ mτ −1
2 + 2xW +1

2

ZZ + neutrinos 9/4 T1 0 0 0 +1
2 −1

2

−3/4 T2 0 0 0 +1
2 −1

2 +1
2 −1

2

WZ + leptons −1 T2 mlα mlα 0 −1
2 + 2xW +1

2 +1
2 −1

2

−1 T2 0 mlα mlα +1
2 −1

2 −1
2 + 2xW +1

2

Table 1: The coefficients and masses that appear in eq. (3.9), in the perturbative limit. The

functions T1 and T2, which depend on the masses m1, m2, m3 and the coefficients a, b, c, d (which

take values as specified above), are defined in eqs. (3.7) and (3.8), respectively. The symbols lα
stand for leptons of generation α, i.e. ml1 ≡ me, ml2 ≡ mµ, ml3 ≡ mτ .

Furthermore the sound speed squared, c2
s(T ) = p′(T )/e′(T ) = p′(T )/Tp′′(T ), can be ex-

pressed as
1

c2
s(T )

= 3 +
Th′

eff(T )

heff(T )
, (4.4)

where a prime denotes a derivative with respect to T . The Hubble rate is given by

H =
T 2

M0(T )
, M0(T ) = MPl

[

45

4π3geff(T )

]
1

2

, (4.5)

where MPl is the Planck mass. Note that, from the assumption (iv) in section 1, the

heavier sterile neutrinos do not contribute to geff and heff for the temperatures of interest.

Furthermore, the contributions from the lightest sterile neutrino are negligibly small as

long as it does not get thermalized.

The kinetic equation (2.3) can easily be integrated by writing nI(t, q) = f(t, y), where

the variable y = a(t)q accounts for red-shift. After simple manipulations one gets the
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distribution function of sterile neutrinos at temperature T0:

nI(t0, q) =
G2

F

3

∫ ∞

T0

dT
M0(T )T 2

c2
s(T )

F

(

mi

T
,

q

T0

[

heff(T )

heff(T0)

]
1

3
)

. (4.6)

The integral of eq. (4.6) over the momenta q gives the number density of sterile neutri-

nos, which can conveniently be normalized with respect to its would-be equilibrium value,

neq(t0) = 3ζ(3)T 3
0 /2π2:

nI(t0)

neq(t0)
=

8G2
F π3

9ζ(3)

∫ ∞

T0

dT

∫ ∞

0
dz z2 M0(T )T 2

c2
s(T )

heff(T0)

heff(T )
F

(mi

T
, z

)

. (4.7)

Finally another characterization of the same quantity is obtained by normalizing through

the total entropy density, which produces the so-called yield parameter:

YI(t0) ≡
nI(t0)

s(t0)
=

30G2
F

π

∫ ∞

T0

dT

∫ ∞

0
dz z2 M0(T )T 2

c2
s(T )heff(T )

F
(mi

T
, z

)

. (4.8)

The benefit of eq. (4.8) is that it obtains, unlike eq. (4.7), a constant value at low temper-

atures (in the absence of entropy production), because the factor heff(T0) drops out.

To summarise, to find the relic concentration of sterile neutrinos produced by active-

sterile transitions, one should have a reasonable approximation for the hadronic equation-

of-state p(T ) and for its first and second temperature derivatives, p′(T ) and p′′(T ).

To convert the result of eq. (4.8) to physical units, we denote the contribution to the

number density of the lightest sterile neutrino (I = 1) from an active neutrino of flavour

α, by nα1 (so that n1 =
∑

α=e,µ,τ nα1). To relate this quantity to Ωdm, we write

Ωα1 ≡ M1nα1

ρcr
=

M1Yα1

ρcr/s
, (4.9)

where Yα1 ≡ nα1/s. From Particle Data Group [51], one finds ρcr ≈ 1.054 ×
10−5 h2 GeV cm−3 and s = 7.04nγ ≈ 2886 cm−3 , yielding ρcr/s ≈ 3.65 × 10−9h2 GeV .

Then the result of eq. (4.8) can be expressed as

Ωα1h
2 = 0.11Cα(M1)

( |MD|α1

0.1 eV

)2

, (4.10)

where Cα(M1) = 2.49 × 10−5 × Yα1/θ
2
α1 × (keV/M1).

The total relic density of the lightest sterile neutrino is now given by
∑

α=e,µ,τ Ωα1h
2.

On the other hand, the dark-matter density in the present Universe has been presicely

measured by the WMAP collaboration [40] (68% CL):

Ωdmh2 = 0.105+0.007
−0.013 . (4.11)

Therefore, to avoid the overclosure of the Universe by N1, we get
∑

α=e,µ,τ Ωα1h
2 <∼ 0.112,

which leads to
∑

α=e,µ,τ

Cα(M1)

( |MD|α1

0.1 eV

)2

<∼ 1.0 . (4.12)

This corresponds to eq. (1.1). In the following, we will present our results for the functions

Cα(M1) defined by eq. (4.10).
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Figure 2: Left: geff, heff as defined in eq. (4.3), for the MSM and for the QCD part thereof, for

T = 1 MeV . . . 4GeV (for more details, see ref. [43]). Right: the speed of sound squared c2

s, for the

same systems. Various sources of uncertainties in these estimates are discussed in the text.

5. Hadronic uncertainties

As discussed in ref. [21], there are in principle three sources of hadronic effects and corre-

sponding hadronic uncertainties in the present computation: those entering Re Σ, Im Σ, as

well as the overall equation-of-state through the considerations in section 4. The hadronic

contributions to Re Σ are suppressed by αw with respect to the leptonic ones and will be

omitted in the following. The hadronic contributions to Im Σ arise at the same order as

the leptonic ones, consituting thus a significant source term. Even more important are the

hadronic contributions to the equation-of-state, since in the temperature range of interest

hadrons completely dominate over leptons as far as the change in the effective number of

light degrees of freedom is concerned (cf. figure 2). On the other hand, the hadronic ef-

fects in the equation-of-state are understood somewhat better than the ones in Im Σ, given

that they are theoretically more straightforward to access, both in the framework of the

weak-coupling expansion [41]–[43] and of lattice simulations [44]–[47], so that the relative

uncertainties are perhaps smaller then in ImΣ. In fact we estimate the absolute uncertain-

ties from these two sources to be of similar magnitudes. In the following we discuss the

ways in which we extract these two quantities and try to estimate their uncertainties.

5.1 QCD equation-of-state

A basic fact to realise about the QCD equation-of-state is that the low-temperature

hadronic world and the high-temperature partonic world can be analytically connected to

each other, by tuning quark masses and the temperature: at non-zero quark masses there

is no order parameter to distinguish between the two situations. Moreover, lattice simula-

tions have been suggesting for quite a while already that such an analytical “crossover” is
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met even if the quark masses are not tuned but kept at their physical values; for a recent

studies see, e.g., refs. [48]. In fact, these statements could even have been made without re-

course to lattice simulations: the thermodynamics of a dilute “gas” of hadronic resonances

at low temperatures, and of interacting quarks and gluons at high temperatures, appear

to extrapolate to each other surprisingly well, when determined precisely enough [43].

Now, even if there only were a smooth crossover in the system, it is conventional to

assign a (pseudo)critical temperature to it; we will denote this temperature by Tc. Of

course Tc cannot be defined precisely, but the “conceptual” ambiguities involved do not

appear to be much larger than the current statistical uncertainties. A recent large-scale

lattice study, for instance, suggests that Tc ' 192 ± 8 MeV [49].

On the other hand, it is also important to realise that at the current moment the lattice

studies still involve systematic uncertainties (related for instance to finite-volume effects

or the absence of a precise continuum extrapolation), which are not quantitatively under

control. Consequently, even though the final word on the value of Tc and on what happens

around it lies with the lattice simulations, they are still rather far from establishing the

correct behaviour in a wide temperature interval. In fact, even the results of various groups

employing similar techniques differ by much more than the statistical uncertainties cited

above [50]. Moreover, lattice studies fail to show any signs of the characteristic peak that

physical pions cause in the sound speed at T ≈ 70 MeV [43] (see also figure 2), a problem

which can probably be assigned to the fact that the quark discretizations used in the current

finite-temperature simulations do not respect the chiral symmetry that plays an essential

role at low temperatures, and also tend to employ unphysically heavy quark masses. Lattice

simulations also cannot be applied at very high temperatures. To summarise, the current

numbers can be expected to be fairly reliable in the range from about Tc to about (2 . . . 3)Tc

at best.

For these reasons, we prefer to adhere to the procedure introduced in ref. [43] here,

rather than to lattice simulations. It makes use of a gas of hadronic resonances at low tem-

peratures; the most advanced (up to resummed 4-loop level [41]) weak-coupling results at

high temperatures; and an interpolation thereof at intermediate temperatures.1 Remark-

ably, the temperature interval where an interpolating function is needed in order to sew

together the two asymptotic functions is fairly narrow, not more than 10 − 20 MeV, and

centered around T ≈ 200 MeV. We will refer to this temperature in the following as T̃c, but

stress that, despite the curiously good agreement with the crossover temperature suggested

by the lattice study mentioned [49], T̃c does not need to coincide with any specific definition

of Tc, given the inherent ambiguity in the location of a crossover. The significant benefit

of this recipe, compared with lattice simulations, is that the results can be evaluated also

at arbitrarily low and high temperatures without problems.

Now, this recipe is naturally not exact in the intermediate temperature range; the

results can be improved when future lattice simulations get closer to the infinite-volume,

continuum, and chiral limits. In order to estimate the uncertainties in the present imple-

mentation, we have considered two types of variations of the basic setup:

1We have corrected a minor error in the numerical results of ref. [43].
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• The shape and “sharpness” of the crossover can be changed by adding artificially

heavy hadronic resonances to the gas, or removing existing ones.

• The overall location of the pseudocritical temperature can be changed most simply

by just rescaling the temperature units by some percentual amount.

It is naturally not difficult to come up with other possible variations as well, but as such

recipes are purely phenomenological in any case, it is sufficient for our purposes to restrict

to these most straightforward possibilities.

We find that the first of these variations has a relatively minor impact on the results.

On the contrary, a change in T̃c would lead to visible changes. Qualitatively, a low T̃c implies

a low abundance, since the results are inversely proportional to g
1/2
eff heff (cf. eq. (4.8)), and

the production then peaks on the partonic side where g
1/2
eff heff is higher. Consequently, we

will assume in the following that the uncertainties of the equation-of-state can be sufficiently

estimated by a rescaling of T̃c by 20% in both directions, T̃c = (160 . . . 240) MeV, which

should be a conservative estimate.

5.2 Vector and axial current spectral functions

As has been discussed in ref. [21], the hadronic contributions to Im Σ can be expressed

through the spectral functions related to vector and axial currents with various flavour

structures. The current status of the in general very demanding challenge of reliably

determining these quantities was also reviewed in ref. [21].

Irrespective of all details, however, the general pattern we expect for the hadronic

effects should be clear: at high temperatures T À Tc, hadrons should be reasonably repre-

sented by free quarks (cf. eq. (3.3)), whereas once the temperature is lowered, confinement

sets in, and all hadronic effects eventually switch off, given that all mesons and baryons are

massive. For T ¿ Tc, for instance, the hadronic spectral functions can be determined with

chiral perturbation theory. It is easy to see that to leading order in the chiral expansion

and assuming a mass-degenerate limit, only the flavour non-singlet axial current, denoted

by Aa
µ in ref. [21], contributes. We have verified explicitly that this dominant pionic con-

tribution is strongly suppressed with respect to the leptonic contributions at all relevant

temperatures (below 1%), for the small masses M1 that we are interested in.

To give another argument in the same direction, we may reasonably assume that the

hadronic effects are proportional to the number of effective hadronic degrees of freedom,

hQCD
eff , related to the hadronic contribution to the entropy, which also rapidly decreases

with the temperature (cf. figure 2).

These considerations suggest that a strict upper bound for the hadronic contribution to

Im Σ can be obtained by simply computing the effect of free quarks, eq. (3.3). We take into

account the u, d, s and c quarks, cf. table 1, with their MS scheme masses [51]. A strict lower

bound can obviously be obtained by simply setting Nc = 0 in the hadronic contributions

listed in table 1. As we have already mentioned, the “error bars” that result from this

(clearly most conservative) procedure are roughly of the same order as those related to the

equation-of-state, as defined in section 5.1. (In fact they are a bit larger as we will see, but
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the recipe is also overly conservative.) Furthermore we define a phenomenological “mean”

value by making use of the perturbative contribution in table 1, but rescaling Nc by the

factor hQCD
eff (T )/58, where 58 counts the hadronic degrees of freedom in the non-interacting

four-flavour limit.

6. Numerical results for the sterile neutrino abundance

For the numerical evaluation of the sterile neutrino abundance it is useful to note that

the computationally most demanding part entering our equations, Im Σ, is practically

independent of M1 in the range M1 ¿ T that we are interested in. Therefore, ImΣ can

be evaluated once and for all by using any fixed M1. In contrast, the “prefactor” (i.e.

the parts of eq. (2.8) other than Im Σ) does depend strongly on the precise value of M1,

yielding a non-trivial dependence on M1 for the function Cα(M1) of eq. (4.10).

As another comment, we note that for q0 > 0 there are seven channels in eq. (3.9) that

can be realised. It can be verified numerically, however, that in practice only the 2 → 2

processes give a significant contribution; the other cases have a restricted phase space and

amount to at most 5% of the 2 → 2 channels (for typical parameter values in fact much

less than 5%), which is smaller than our uncertainties. To decrease the numerical cost, we

have therefore omitted these contributions in the following. It may be noted, though, that

these additional channels systematically increase the sterile neutrino abundance.

The way we have numerically evaluated the phase space integrations entering ImΣ at

the 2-loop level is explained in some detail in appendix B. Once an efficient implementation

is available, the remaining integrations (over T, q; cf. eq. (4.8)) are relatively straightfor-

ward. We note that the q-integration converges exponentially fast, and can in practice be

limited to values q/T <∼ 10 . . . 15.

In figure 3 we show an example of the T0-evolution of the function Cα(M1), as defined

by eq. (4.10). We observe that most of the sterile neutrino abundance is indeed generated

at temperatures of a few hundred MeV for M1 in the keV range.

In figure 4 the final low-temperature values of Cα(M1) are shown as a function of α

and M1. Importantly, we observe that the dependence on M1 is fairly mild for a wide

range of M1, say M1 = (0.1–103) keV, once expressed as in eq. (4.10). This means, roughly

speaking, that the relic density of N1 is determined by the Dirac neutrino masses |MD|α1.

According to eq. (4.12) the Dirac neutrino masses should typically be |MD|α1 <∼ 0.1 eV.

Furthermore, due to the differences between Cα, the relic abundance of N1 depends

on the flavour structure of the Dirac neutrino masses |MD|α1. We find the (moderate)

hierarchy Ce > Cµ > Cτ . Thus, the largest abundance is obtained when

|MD|e1 6= 0 , |MD|µ1 = |MD|τ1 = 0 . (6.1)

In this case (which we call “case 1”), we obtain the most stringent upper bound on θ2 from

eq. (4.12). On the other hand, the case (which we call “case 2”) when

|MD|τ1 6= 0 , |MD|e1 = |MD|µ1 = 0 , (6.2)

gives the smallest relic abundance and the weakest upper bound on θ2.

– 17 –



J
H
E
P
0
1
(
2
0
0
7
)
0
9
1

0.0 0.2 0.4 0.6 0.8 1.0
Cα(M

1
)

10
1

10
2

10
3

T
0 / 

M
eV

uncertainty from the EOS

uncertainty from scatterings

Figure 3: An example of the T0-evolution of Cα (cf. eqs. (4.8)–(4.10)), for a fixed α = e and

M1 = 10 keV. Shown are the two sources of hadronic uncertainties that are discussed in the text:

from the equation-of-state (EOS) and from hadronic scatterings.
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Figure 4: The functions Cα(M1), together with estimated hadronic uncertainties, as described in

the text (see also figure 3). Left: α = e, µ, and only the uncertainties for α = e are shown. Right:

α = τ .

In figure 5, we show the upper bounds on the mixing angle for the above two cases.

We also compare with the most recent previous computation from the literature [13]. It

can be seen that the bound obtained is rather insensitive to the flavour structure of the
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eq. (7) of ref. [13]

Figure 5: The parameter values that, according to our theoretical computation (cf. figure 4 and

eq. (4.10)), lead to the correct dark matter abundance in the Dodelson-Widrow scenario; if addi-

tional sources are present, sin22θ must lie below the curves shown. The grey region between case 1

(lower solid line) and case 2 (upper solid line) corresponds to different patterns of the active-sterile

mixing angles, cf. eqs. (6.1), (6.2). The absolute upper and lower bounds correspond to one of these

limiting patterns with simultaneously the uncertainties from the EOS and from hadronic scatterings

set to their maximal values. The yellow band indicates the result in eq. (7) of ref. [13],2 where we

have inserted Ωdm = 0.20, and varied the parameter Tc in the range Tc = (150 . . .200)MeV.

Dirac neutrino masses |MD|α1, at least when plotted on a logarithmic scale.

If we ignore the dependence of Cα on M1 and α in figure 4, setting Cα ' 0.5, we obtain

a very simple but useful approximate bound,

sin2(2θ) ≈ 4
∑

α=e,µ,τ

θ2
α1

<∼ 8 × 10−8

(

M1

keV

)−2

. (6.3)

More precise expressions, based on fitting the numerical data, will be given in eqs. (7.1)

of the next section. In figure 5 the units on the y-axis have been so chosen that a direct

comparison with the approximate formula in eq. (6.3) is possible.2

An alternative normalization of the sterile neutrino abundance is given in eq. (4.7),

and the corresponding results are plotted in figure 6. It is observed that the abundance

generated is typically much below its equilibrium value, as expected [recall that in order

to avoid overclosure, (|MD|α1/0.1 eV)2 <∼ a few, cf. eq. (4.12) and figure 4].

2Ref. [13] does not state explicitly the sterile neutrino mass range in which its eq. (7) should be valid.

After the eprint version of our paper had appeared, we were informed by K. Abazajian that eq. (7) of

ref. [13] was meant to be valid for 0.5 keV < M1 < 10 keV.
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Figure 6: The sterile neutrino abundance normalised to its equilibrium abundance, nα1/neq, at

T0 = 1MeV. Hadronic uncertainties have the same meaning as in figure 3. The combination

(|MD|α1/0.1 eV)2 has been factored out in analogy with eq. (4.10) and, for better visibility, the

results have been multiplied by M1/keV. Left: α = e, µ, and only the uncertainties for α = e are

shown. Right: α = τ .
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Figure 7: The distribution functions nα1(t0, q), for T0 = 1 MeV, normalised to the massless

equilibrium case, neq(t0, q) = 2nF(q)/(2π)3. The combination (|MD|α1/0.1 eV)2 has been factored

out in analogy with eq. (4.10). Left: α = e. Right: α = τ . These results can be compared with

figure 1 of ref. [13], showing the same distribution functions for 0.3 keV ≤ M1 ≤ 140 keV; although

similar at first sight, there are significant differences on closer inspection, for instance our curves

are monotonic functions of q/T even for small M1, unlike those in ref. [13].

Finally, in figure 7 we show the momentum distribution, nα1(T, q), for a few examples,

normalised to the massless equilibrium case, neq(t0, q) = 2nF(q)/(2π)3. As noted in the lit-

erature [13], the momentum distribution is shifted towards the infrared compared with the

equilibrium distribution. For heavy M1 the shift is fairly substantial (note the logarithmic
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Figure 8: The average sterile neutrino momentum compared with the active neutrino equilibrium

value, 〈|qs|〉/〈|qa|〉, where 〈|qa|〉 ≡ 7π4T0/180ζ(3) ≈ 3.15T0. Left: α = e, µ, and only the uncer-

tainties for α = e are shown. Right: α = τ . We have assumed for this figure that only one of the

mixing angles θα1 is non-vanishing.

scale). Structure formation simulations necessitate the momentum distribution function of

dark matter as input, and curves such as the ones in figure 7 could be used for this purpose.

However, as mentioned in section 1, one may get a rough first impression of the results

already by just rescaling the average momentum to a shifted value. To allow for such an

estimate, figure 8 displays the average momentum of the sterile neutrinos generated, in

comparison with the equilibrium value for active neutrinos.

7. The Dodelson-Widrow scenario

We are now in the position to discuss the Dodelson-Widrow (DW) scenario for sterile

neutrino dark matter, which is based on the assumptions (i)–(iv) we stated in section 1.

In this scenario, the initial abundance of the dark-matter sterile neutrinos was zero at

T À 1 GeV, and they were only produced in active-sterile neutrino transitions from the

thermal plasma. Thus, in terms of eq. (1.1), it is the maximal value of the mixing angle

which realizes this scenario, sin2(2θ) = f(M1). We denote Ms ≡ M1 in this case. This

scenario can be confronted with a number of cosmological and astrophysical observations.

In order to carry out a comparison with the various X-ray constaints that exist, we

replot the curves of figure 5 in figure 9 (for a subrange of mass values), and compare with

the regions excluded according to refs. [20, 26]. To facilitate numerical estimates, we also

note that in this mass range (and on the resolution of the logarithmic scale), the theoretical
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Figure 9: The central region of figure 5 (M1/keV = 0.3 . . . .50.0), compared with regions excluded

by various X-ray constraints. From left to right, the X-ray constraints come from refs. [20, 26, 20],

respectively. The abbreviation LMC stands for the Large Magellanic Cloud, and the names in the

parentheses refer to the X-ray observatories whose data were employed for deriving the constraints.

curves can be roughly approximated by straight lines,

log10[sin
22θ] ' −6.9267 − 1.7350 log10[Ms/keV] (absolute upper bound)

log10[sin
22θ] ' −7.0862 − 1.8451 log10[Ms/keV] (case 2, mean)

log10[sin
22θ] ' −7.2491 − 1.8359 log10[Ms/keV] (case 1, mean)

log10[sin
22θ] ' −7.6195 − 1.7428 log10[Ms/keV] (absolute lower bound)

. (7.1)

These fits improve on the first approximation in eq. (6.3). The lower bound of the region

excluded by X-ray constaints will be denoted by fX(Ms); for this data a straight line is a

worse approximation, but restricting to the mass range Ms = (2 . . . 10) keV, the function

can be roughly approximated by a parabola,

log10[sin
22θ] ' −3.9499 − 9.7859 log10[Ms/keV] + 3.4902 log2

10[Ms/keV] . (7.2)

We then note that the intersection of f(Ms) and fX(Ms) gives an upper bound on Ms.

It is found from eqs. (7.1), (7.2) that the bound Ms < 3.5 keV is obtained by using the

mean predictions for the cases 1 and 2 discussed in eqs. (6.1), (6.2) of the previous section.

For the most conservative case with respect to the hadronic uncertainties, the bound can be

as large as Ms < 4.3 keV. Adopting the absolute lower bound on f(Ms) with the maximal

hadronic uncertainties, and also assuming that the X-ray constraints are still uncertain by

a factor of two, we set Ms < 6 keV as the most conservative limit. As we will show below,

– 22 –



J
H
E
P
0
1
(
2
0
0
7
)
0
9
1

possible entropy dilution through the decays of the heavier sterile neutrino(s) makes this

bound more severe, and, therefore, this bound is robust.

The fate of this scenario now depends on constraints from structure formation sim-

ulations, making use of Lyman-α observations, which give a lower bound on the mass of

the dark matter sterile neutrino as Ms >∼ 〈|qs|〉/〈|qa|〉M0, where M0 ≈ 14.4 keV (with

〈|qs|〉/〈|qa|〉 ' 0.9) [32] and M0 ≈ 10 keV (with 〈|qs|〉/〈|qa|〉 ' 1.0) [33] at 95% CL. Note,

however, that these bounds are obtained by assuming that the sterile neutrino momentum

distribution function is proportional to the Fermi-Dirac one (with a certain rescaling of the

average momentum in ref. [32]), even though the sterile neutrino is not thermalised. As

shown in figure 7, the momentum distribution function is in fact significantly distorted from

the Fermi-Dirac shape towards the infrared (apart from having a smaller normalization).

Assuming that the corresponding effects can be captured by the factor ∼ 〈|qs|〉/〈|qa|〉, we

read from figure 8 that 〈|qs|〉/〈|qa|〉 ' 0.8 for Ms ' 10 keV. Given that refs. [32, 33] assumed

〈|qs|〉/〈|qa|〉 ' 0.9, 1.0, respectively, the results for lower bounds can be re-interpreted as

Ms >∼ 11.6 keV and Ms >∼ 8 keV. Thus the X-ray and Lyman-α regions do not overlap,

and astrophysical and cosmological constraints appear to rule out the DW scenario, in

spite of all theoretical uncertainties involved in the computation. The scenario can only

survive if the computations of refs. [32, 33] turn out to be uncertain for some reason, be it

on the observational side, or on the theoretical side, related to the momentum distribution

of the sterile neutrino (i.e., the need to use of the proper distribution function from fig-

ure 7 rather than the Fermi-Dirac one). We should mention that, even in such a situation,

the Tremaine-Gunn lower bound Ms >∼ 0.3 keV for fermionic dark matter does remain

valid [36].

7.1 Entropy dilution

In the νMSM, there are two heavier sterile neutrinos in addition to the lightest dark-matter

one. As shown in ref. [19], the heavier sterile neutrino(s) could momentarily dominate the

energy density of the Universe, and their subsequent decay(s) could cause a significant

entropy dilution after the dark matter sterile neutrinos have been produced. Here we

briefly reiterate the corresponding effects, i.e., relax the assumption (iv) of section 1.

Due to the entropy release, the yield Y1 of the dark matter sterile neutrino is diluted

by a factor S compared with that without the entropy dilution. Thus, the upper bound

on the active-sterile neutrino mixing angle becomes weaker,

sin2(2θ) <∼ f(Ms) × S . (7.3)

Note that fX(Ms) from the X-ray constraints does not change, since fX is derived from

the present dark matter density Ωdm. Then, we can see from figure 9 that the upper bound

on Ms becomes more stringent for a larger S.

On the other hand, the lower bound on Ms from the Lyman-α observations

also decreases if S > 1, by a factor S1/3 if N1 is out-of-equilibrium [19]. The

combination of the two effects might open a window for sterile neutrino dark mat-

ter even in the presence of the Lyman-α constraints. To quantify the effect, we
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note that in the region Ms ≤ 4 keV, the X-ray bound can be approximated as

log10[sin
22θ] <∼ −4.6121 − 6.4659 log10[Ms/keV]; the most conservative bound from

eq. (7.1) becomes log10[sin
22θ] <∼ −7.6195 − 1.7428 log10[Ms/keV] + log10[S]; and the

Lyman-α bounds obtain the form Ms × S1/3 >∼ (8 . . . 11.6) keV.

If Ms × S1/3 >∼ 8 keV from ref. [33], we find that there appears an allowed region for

S >∼ 155. When S ≈ 155, a sterile neutrino with Ms ≈ 1.5 keV and sin2(2θ) ≈ 1.9 × 10−6

could function as dark matter and be consistent with X-ray and Lyman-α constraints.

On the other hand, if Ms × S1/3 >∼ 11.6 keV from ref. [32], there is an allowed region for

S >∼ 3.3 × 103, corresponding to Ms <∼ 0.78 keV and sin2(2θ) >∼ 1.2 × 10−4. However,

the combination (|MD|α1/0.1 eV)2 = 2.5 × 107 (Ms/keV)2 sin2(2θ) is larger than 103 in

this case and, according to figure 6, N1 are thermalized, whereby the assumptions we have

made are no longer self-consistent. We discuss the correct procedure for the latter case

in section 7.2.

To summarise, we have learned that the Dodelson-Widrow scenario remains a possi-

bility if there exists a large enough entropy dilution and if the lower bound on Ms from

the Lyman-α data is small enough. However, it is very difficult to get such a large dilution

factor within the νMSM. It has been shown in ref. [19] that the νMSM induces S ∼ 30

at most and S >∼ 100 is obtained only if there exists some physics beyond the νMSM.

Therefore, to realize this scenario, the constraints from the Lyman-α data should again be

weaker than those presented in refs. [32, 33].

7.2 The case of thermalised sterile neutrinos

So far, we have assumed that the Dirac neutrino masses |MD|α1 are sufficiently small so that

N1 was never in thermal equilibrium. Now, let us discuss the possibility of thermalized N1

as dark matter. If N1 is thermalized at some high temperatures and decouples at T = Td1,

the present relic density is given by

ΩN1
h2 = 10.6

(

Ms

keV

)(

10.75

heff(Td1)

)

. (7.4)

Note that this result is independent of θ as long as θ is sufficiently large such that N1 was

thermalized at T > Td1. To explain all of dark matter by such a density of N1’s, the sterile

neutrino mass should be

Ms ' 10 eV

(

heff(Td1)

10.75

)

. (7.5)

The ratio heff/10.75 is at least unity, cf. figure 2. In any case, this value is much smaller

than the Tremaine-Gunn bound, Ms >∼ 0.3 keV, and is also below the bounds from the

Lyman-α constraints for the thermalised case; Ms >∼ 2.4 keV [32] and Ms >∼ 2 keV [33]

(at 95% CL).

If there exists entropy dilution, the mass of the once-thermalized dark matter sterile

neutrino becomes

Ms ' 10 eV

(

heff(Td1)

10.75

)

× S . (7.6)
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On the other hand, the Tremaine-Gunn bound and the Lyman-α constraint remain un-

changed. This is because the distribution function of the sterile neutrino was the Fermi-

Dirac one at T = Td1 and it is just red-shifted to the present time. Although the Tremaine-

Gunn bound can be satisfied with S ' 30, larger factors S >∼ 240 and 200 are required

to avoid the Lyman-α bounds from refs. [32, 33], respectively. Therefore, the thermalized

N1 can be dark matter within the νMSM only if there is the largest possible entropy dilu-

tion and if the lower bound on Ms is given by the Tremaine-Gunn bound, rather than the

Lyman-α bounds.

7.3 Summary

We have shown in this section that if the lower bound on Ms from the Lyman-α data is

indeed as found in refs. [32, 33], then there is no parameter space left within the νMSM

to realize the scenario of sterile neutrinos serving as warm dark matter, respecting the

“crucial” assumptions (i)–(iii) of section 1.

Of course, this does not mean that the sterile neutrino is excluded as a dark matter

candidate, but that at least one of the assumptions would have to be relaxed for this to be

the case. For instance, sterile neutrinos could be produced mainly in interactions beyond

the νMSM, as in ref. [5]. Another logical possibility is that the Universe had substantial

leptonic asymmetries at small temperatures, leading to a resonant production of sterile

neutrinos [8]. In any event, for Ms > 3.5 keV (6 keV if all hadronic uncertainties are

pushed in one direction and the strongest X-ray bounds are relaxed by a factor of two)

the active-sterile transitions from the thermal charge-symmetric plasma cannot produce

cosmologically interesting amounts of sterile neutrino dark matter.

Finally, we should like to stress that, within the corner of the parameter space that

defines the νMSM, the bound on the mixing angle sin2(2θ) <∼ f(Ms), i.e. eq. (4.12), gives

a prediction on the mass scale of the lightest active neutrino, mν1
, whose see-saw formula

includes the lightest Majorana mass M1 only [1]. By setting Cα(M1) ' 0.5, we find

mν1
<∼

∑

α=e,µ,τ

|MD|2α1

M1

<∼ 2 × 10−5 eV

(

keV

M1

)

. (7.7)

If N1 is the dark matter particle, its mass should in any case be M1 >∼ 0.3 keV from the

Tremaine-Gunn bound. Then, we get the weakest bound as mν1
<∼ 6.7×10−5 eV, which is

much smaller than the neutrino mass scales observed in the atmospheric and solar neutrino

experiments. Furthermore, the upper bound on mν1
becomes smaller for a larger M1. This

clearly excludes the possibility that the three active neutrinos are nearly degenerate in

mass, and indicates that one could find the absolute values of the heavier active neutrino

masses from the results of neutrino oscillation experiments [1]. These conclusions remain

valid even if there is entropy production as long as non-thermalized sterile neutrinos play

the role of dark matter.

8. Conclusions

In this paper we have studied the production of sterile neutrinos in the νMSM through

active-sterile neutrino transitions from a thermal plasma, which does not contain any sig-
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nificant asymmetries related to lepton numbers. Though a first-principles formula for the

production rate exists, which is valid to all orders in the strong coupling constant, its prac-

tical evaluation is subject to a number of uncertainties related to the strong interactions.

The purpose of this paper has been to present a realistic “mean” evaluation of the hadronic

contributions, and to estimate conservatively all the uncertainties that this mean result is

subject to.

The most important result of this paper is encoded in the four lines shown in figure 9.

They correspond to the case when there is no entropy production (S = 1) due to the

decay of the heavier sterile neutrinos of the νMSM. The area above the dotted line is

certainly excluded: the amount of dark matter produced would lead to the overclosure

of the Universe. The region below the dashed line is certainly allowed: the amount of

sterile neutrinos produced due to active-sterile transitions is smaller than the amount of

dark matter observed. Any point in the region between the two solid lines (corresponding

to the “most reasonable” model for the hadronic contributions that we have been able to

come up with) can lead to dark matter generation entirely due to active-sterile transitions.

A maximal variation of the parameters of our hadronic model extends this region to the

space between the dotted and dashed lines. In the case of entropy production with a factor

S > 1.0, all these four lines simply move up by a factor S.

As figure 9 shows, active-sterile transitions can account for all of dark matter only if

M1 < 3.5 keV, if the “most reasonable” hadronic model is taken. The most conservative

upper limit would correspond to M1 < 6 keV, if all uncertainties are pushed in the same

direction and also if the most stringent X-ray bounds are relaxed by a factor of two. There-

fore, if the Lyman-α constraints from refs. [32, 33] are taken for granted, the production

of sterile neutrinos due to active-sterile neutrino transitions happens to be too small to

account for the observed abundance of dark matter. In other words, physics beyond the

νMSM is likely to be required to produce dark matter sterile neutrinos. Another option is to

assume that the Universe contained relatively large lepton asymmetries [8]. We would like

to stress, though, that (apart from the astrophysical uncertainties related to the Lyman-α

data) the simulations mentioned have not utilised the correct non-equilibrium momentum

distribution functions as given in figure 7, and may thus contain systematic uncertainties.
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A. Two-particle phase space integrals

We discuss in this appendix how the phase space integrals of eq. (3.1) can be reduced to a

one-dimensional integration in order to allow for a numerical evaluation.

Let P be a time-like four-vector, P 2 > 0. We can then define a Lorentz-boost, ΛP ,

which takes us to the rest-frame with respect to P : [ΛP P ]i = 0, i = 1, 2, 3. We denote
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Q̂ ≡ ΛP Q, with the components Q̂ = (q̂0, q̂). To be explicit, this Lorentz-boost is given by

q̂0 = γ[q0 + βe · q] , (A.1)

q̂ = q− e · qe + γ[βq0 + e · q]e , (A.2)

where

β = −|p|
p0

, γ =
1

√

1 − β2
, e =

p

|p| . (A.3)

Denoting by f [u;P1;P2;Q] a generic Lorentz-scalar, for instance

f [u;P1;P2;Q] = 2Q · P1 nB(u · P2)[1 − nF(u · P1)] , (A.4)

as would be relevant for the second term in eq. (3.1), we then consider the integral

I ≡
∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2
(2π)4δ(4)(P2 − P1 − Q) f [u;P1;P2;Q] , (A.5)

where Q = (q0,q), Pi = (Ei,pi) are on-shell four-vectors. Making use of the Lorentz-boost

introduced above, we rewrite the integration in a frame where Q is at rest, q̂ = 0:

I =

∫

d3p̂1

(2π)32Ê1

∫

d3p̂2

(2π)32Ê2

(2π)4δ(3)(p̂2 − p̂1)δ(Ê2 − Ê1 − MI) f [û; P̂1; P̂2; Q̂]
∣

∣

∣

V̂ ≡ΛQV
.

(A.6)

The integral over p̂2 is now trivial:

I =
1

(2π)2

∫

d3p̂1

4
√

p̂2
1 + m2

1

√

p̂2
1 + m2

2

δ
(

√

p̂2
1 + m2

2 −
√

p̂2
1 + m2

1 − MI

)

×

×f

[

ΛQu;
(

√

p̂2
1 + m2

1, |p̂1|Ωp̂1

)

;
(

√

p̂2
1 + m2

2, |p̂1|Ωp̂1

)

; ΛQQ

]}

. (A.7)

Moreover the integral over |p̂1| can be performed by making use of
∫ ∞

0

dxx2g(x)
√

x2 + m2
1

√

x2 + m2
2

δ(
√

x2 + m2
2 −

√

x2 + m2
1 − M)

= θ(m2 − m1 − M)
ρ12(M)g(ρ12(M))

M
, (A.8)

where the function

ρij(M) ≡ 1

2M

√

M4 − 2M2(m2
i + m2

j) + (m2
i − m2

j)
2 (A.9)

is real and positive for 0 < M < |m1 − m2| and M > mi + mj. The integral thus becomes

I =
|p̂1|

(4π)2MI
θ(m2 − m1 − MI) × (A.10)

×
∫

dΩp̂1
f

[

ΛQu;
(

√

p̂2
1 + m2

1, |p̂1|Ωp̂1

)

;
(

√

p̂2
1 + m2

2, |p̂1|Ωp̂1

)

; (MI ,0)

]
∣

∣

∣

∣

|p̂1|≡ρ12(MI)

.

Now, the integrand in eq. (A.10) depends on two spatial vectors, q, Ωp̂1
, and thus on

one angle. We can choose q = (0, 0, |q|), Ωp̂1
= (sin θ, 0, cos θ),

∫

dΩp̂1
= 2π

∫ π
0 dθ sin θ.

However, the Fermi-distributions in eq. (A.4) do depend on θ, because the spatial part of

ΛQu is non-zero and proportional to q, so that the remaining integration is non-trivial. On

the contrary, scalar products such as Q · P1, Q · P2, P1 · P2 are independent of θ, because

we can evaluate them in the “hatted” frame where q̂ = 0.
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B. Three-particle phase space integrals

We discuss in this appendix how the phase space integrals of eq. (3.9) can be reduced to a

three-dimensional integration in order to allow for a numerical evaluation.

Denoting by f [u;P1;P2;P3;Q] a generic Lorentz-scalar, for instance

f [u;P1;P2;P3;Q] = Ti nF(u · P1)nF(u · P2)[1 − nF(u · P3)] , (B.1)

where Ti = T1 or T2 from eqs. (3.7) or (3.8), we consider the integral

I ≡
∫

d3p1

(2π)32E1

∫

d3p2

(2π)32E2

∫

d3p3

(2π)32E3
(2π)4δ(4)(P1 + P2 − P3 − Q) f [u;P1;P2;P3;Q] ,

(B.2)

where Q = (q0,q), Pi = (Ei,pi) are on-shell four-vectors. Making use of the Lorentz-boost

introduced in appendix A, we rewrite a certain Lorentz-invariant subpart of the integration

in a frame where P3 + Q is at rest, p̂3 + q̂ = 0:

I =

∫

d3p3

(2π)32E3

{
∫

d3p̂1

(2π)32Ê1

∫

d3p̂2

(2π)32Ê2

×

×(2π)4δ(3)(p̂1 + p̂2)δ(Ê1 + Ê2 − Ê3 − q̂0) f [û; P̂1; P̂2; P̂3; Q̂]

}

V̂ ≡ΛP3+QV

. (B.3)

The integral over p̂2 is now trivial:

I =

∫

d3p3

(2π)32E3

{

1

(2π)2

∫

d3p̂1

4
√

p̂2
1 + m2

1

√

p̂2
1 + m2

2

δ
(

√

p̂2
1 + m2

1+
√

p̂2
1 + m2

2−Ê3−q̂0
)

×

×f

[

ΛP3+Qu;
(

√

p̂2
1 + m2

1, |p̂1|Ωp̂1

)

;
(

√

p̂2
1 + m2

2,−|p̂1|Ωp̂1

)

; ΛP3+QP3; ΛP3+QQ

]}

.

(B.4)

Moreover the integral over |p̂1| can be performed by making use of

∫ ∞

0

dxx2g(x)
√

x2 + m2
1

√

x2 + m2
2

δ(
√

x2 + m2
1+

√

x2 + m2
2−Ê) = θ(Ê−m1−m2)

ρ12(Ê)g(ρ12(Ê))

Ê
,

(B.5)

where the function ρij is defined in eq. (A.9). The integral thus becomes

I =

∫

d3p3

(2π)32E3

{

1

(4π)2

∫

dΩp̂1
θ(Ê3 + q̂0 − m1 − m2)

ρ12(Ê3 + q̂0)

Ê3 + q̂0
× (B.6)

×f

[

ΛP3+Qu;
(

√

p̂2
1 + m2

1, |p̂1|Ωp̂1

)

;
(

√

p̂2
1 + m2

2,−|p̂1|Ωp̂1

)

; ΛP3+QP3; ΛP3+QQ

]}

,

where |p̂1| ≡ ρ12(Ê3 + q̂0).

Now, the integrand in eq. (B.6) depends on three spatial vectors, q, p3, Ωp̂1
, and thus

in general on three angles. However, the Fermi-distributions only depend on two angles,

so that the dependence on the third angle is very simple and can be handled analytically.
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To implement this in practice we may for instance note that, due to O(3) invariance, we

can choose q ≡ (0, 0, |q|) and p3 in the (x, z)-plane, p3 ≡ |p3|(sin θ, 0, cos θ), so that
∫

d3p3 ≡ 2π

∫ ∞

0
|p3|2 d|p3|

∫ π

0
sin θ dθ . (B.7)

Defining the unit vector e = (p3 + q)/|p3 + q| as before [it now lies within the (x, z)-

plane], we parametrize the remaining vector Ωp̂1
by using spherical coordinates θ̂, φ̂ with

e as the polar axis. In the original frame, Ωp̂1
is then given by Ωp̂1

≡ (ez sin θ̂ cos φ̂ +

ex cos θ̂, sin θ̂ sin φ̂, ez cos θ̂− ex sin θ̂ cos φ̂). With this parametrization and given the form

of f that appears in eq. (B.1), it is not difficult to realise that the integrand depends on

φ̂ only as a 2nd order polynomial in cos φ̂: f(φ̂) = a + b cos φ̂ + c cos2φ̂. Therefore we can

replace
∫ 2π

0
dφ̂ f(φ̂) = π

[

f
(π

4

)

+ f
(3π

4

)]

. (B.8)

Only a three-dimensional integration (over |p3|, θ, θ̂) needs hence to be carried out.

Finally we remark that in the other channels (3 → 1, 1 → 3), the role of P3 + Q is

played a difference, for instance P3−Q. For arbitrary P3, Q this is not necessarily time-like.

However the δ-functions appearing in these channels always restrict the differences to be

equal to a sums, for instance P1+P2, which are time-like. Therefore non-zero contributions

only emerge from regions of the phase space where P3 − Q is time-like, and the procedure

described above can be taken over with minimal modifications.
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